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The appropriate description of fluctuations within the framework of evolutionary game theory is a funda-
mental unsolved problem in the case of finite populations. The Moran process recently introduced into this
context in Nowaket al., fNaturesLondond 428, 646s2004dg defines a promising standard model of evolution-
ary game theory in finite populations for which analytical results are accessible. In this paper, we derive the
stationary distribution of the Moran process population dynamics for arbitrary 232 games for the finite-size
case. We show that a nonvanishing background fitness can be transformed to the vanishing case by rescaling
the payoff matrix. In contrast to the common approach to mimic finite-size fluctuations by Gaussian distributed
noise, the finite-size fluctuations can deviate significantly from a Gaussian distribution.
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Theoretical studies of coevolutionary dynamics usually
assume infinite populations, as the replicator dynamicsf1,2g
or the Lotka-Volterra equationsf3,4g. The limit of infinite
populations leading to deterministic differential equations is
an idealization motivated mainly by mathematical conve-
nience. Only in a few cases will the population be large
enough to justify the assumption of infinite populations.

In finite populations, crucial differences can appear. Popu-
lation states that cannot be invaded by a small fraction of
mutants in infinite population, so-called evolutionary stable
strategiesf1g, can be invaded by a single mutantf5g. In ad-
dition, a certain inherent stochasticity is always present in
finite populations. In multipopulation interactions, such fluc-
tuations can possibly be exploitedf6g. In this paper, we
quantify the inherent fluctuations arising from finite popula-
tions. As a starting point, we investigate the classical Moran
processf7g that was recently transferred to frequency depen-
dent selectionf5,8g. In a Moran process, in each time step
one agent is replicated and one agent is eliminated. Thus the
total size of the population is strictly conserved. This process
can be considered as a standard model for game dynamics in
finite populations. Although a strictly fixed population size
will be fulfilled only in systems with hard resource limita-
tions, e.g., a fixed number of academic positions, it is a
widely common default, especially in spatial gamesf9–13g.
From a systematic point of view, the dynamics within this
process and the nature of the fluctuations have to be under-
stood before a generalization to variable population sizes on
solid grounds is possible.

In f14g we have shown that the Moran process introduced
in f5g can be derived as a mean-field approximation of the
finite population game dynamics. In mean-field theories of
evolutionary game theoryf15–18g not only the spatial de-
grees of freedom are neglected; but the limit of infinite popu-
lations also implies a transition from a stochastic system to a
deterministic equation of motion. While the average effect of

mutations can often be lumped in a deterministic term
f15,21g, different ways to incorporate external stochasticity
have been proposed, e.g., by a Langevin term of Gaussian
distributed noisef6,19,20g or stochastic payoffsf22g. Conse-
quently, one could also approximate the intrinsic noise of the
finite system by Gaussian noise reintroduced into the con-
tinuum equations. But apriori it is not clear, in which situ-
ation this approximation is justified. Especially in small
populations, the inherent stochasticity may significantly ex-
ceed any external noise. In a finite-round Prisoner’s Di-
lemma game, the broadness of the distribution of cooperators
recently was found to promote cooperationf23g. Further, the
distribution decay of fluctuations is known to be of substan-
tial impact both in genetic evolutionary dynamicsf24g and in
evolutionary optimizationf25g.

To clarify the nature of inherent fluctuations of evolution-
ary dynamics in a Moran process is the scope of this paper.
We quantify the deviations from the mean value by explic-
itely calculating the stationary distribution of strategies for
general 232 games and provide a transformation for the
case of nonvanishing background fitness. The process is il-
lustrated with two qualitatively representative kinds of
games, and the exact solution, also for the more realistic
situation of a nonvanishing background fitness, is provided.

Moran evolution dynamics in232 games. We consider a
finite population ofN agents of two different types,A andB,
interacting in a game with the payoff matrix

P = Sa b

c d
D . s1d

Each agent interacts with a certain number of randomly cho-
sen partners. TheA individual s obtains the fitness

ps
A = 1 −w + w

ns
Aa + ns

Bb

ns
A + ns

B , s2d

wherens
Asns

Bd is the number of interactions withA sBd indi-
viduals. 0øwø1 measures the contribution of the game to
the fitness, 1−w is the background fitness. An equivalent
equation holds forB agents. Occasionally, the payoff of a
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randomly chosen individuals is compared with the payoff of
another randomly chosen agent,u. With probability ps/ sps

+pud, a copy of agents replaces agentu. With probability
pu/ sps+pud, agents is replaced by a copy ofu. The prob-
ability that an agent reproduces is hence proportional to its
payoff. The payoff depends on the type of the individual and
on the kind of its interactions. This approach is frequently
used in simulations of multiagent systemsf26–29g, genetic
algorithmsf30,31g, and evolutionary game theoryf16g.

The averaged dynamics of this model can be computed
from a mean-field theoryf14g. If every agent interacts with a
representative sample of the population, the average payoff
of A andB individuals will be, respectively,

pAsid = 1 −w + w
asi − 1d + bsN − id

N − 1
,

pBsid = 1 −w + w
ci + dsN − 1 − id

N − 1
, s3d

where i is the number ofA individuals. We explicitly ex-
cluded self-interactions. An individual is selected for repro-
duction with a probability proportional to its payoff, as de-
scribed above. It replaces an individual that is chosen at
random. This reduces the process to a Moran processf7g,
which was recently transfered to a game theoretic context
f5,8g. The corresponding mean-field dynamics is given by a
Markov process with the transition probabilitiesf14g

Ti→i+1 =
pAsidi

pAsidi + pBsidsN − id
N − i

N
,

Ti→i−1 =
pBsidsN − id

pAsidi + pBsidsN − id
i

N
,

Ti→i = 1 −Ti→i+1 − Ti→i−1. s4d

All other transition probabilities are zero. The statesi =0 and
i =N are absorbing, while the remaining states are transient.
Conveniently, a small mutation can be introduced to allow
for an escape from the absorbing statesf32g.

The general case of nonvanishing background fitness. For
a nonvanishing background fitness 1−w.0 the transition
properties obtained directly from Eqs.s3d and s4d become
quite lengthy. A more elegant way is to rescale the payoff
matrix of a given 232 game according to

Sa8 b8

c8 d8
D = S1 + sa − 1dw 1 + sb − 1dw

1 + sc − 1dw 1 + sd − 1dw
D . s5d

With this rescaled payoff matrix, a vanishing background
fitness can be assumed ins3d without loss of generality.

Fluctuations around the average strategy. In order to
quantify the deviations from the average strategy of the sys-
tem, we compute the stationary distributionPi for this sys-
tem. We assume a small mutation probabilitym. For m!1,
mutations affect the system only in the states that are absorb-
ing for m=0. In this case, the strategy distribution is gener-
ated only by the inherent stochasticity of the finite popula-
tion. The stationary probability can be computed in the

interior independently from the boundaries, the correct nor-
malization can then be found analyzing the transitions from
the boundaries to the interior, i.e.,P0m=P1T1→0.

Let us first consider theneutral evolutionlimit of w=0,
where the fitness is constant and independent of the type.
The payoffs arepAsid=pBsid=1. This implies

Ti→i+1 = Ti→i−1 =
isN − id

N2 . s6d

From PiTi→i+1=Pi+1Ti+1→i we find in equilibrium for 0, i
,N,

Pi ~
1

sN − idi
, s7d

which has a minimum ati =N/2. The equilibrium distribu-
tion arises from a neutral evolution of two types, as known
from population geneticsf33g.

Constant fitness. The simplest case forw.0 is the case of
constant fitness, i.e.,a=b,c=d=1. The evolutionary dy-
namics drifts towards the typeB, which has higher fitness.
We find for the stationary probability distributions0, i ,N
−1d,

Pi+1

Pi
= r

rsi + 1d + N − i − 1

ri + N − i

i

i + 1

N − i

N − i − 1
, s8d

where r =1−w+wa,1. Far from the borderssat i =0, Nd,
Pi+1/Pi converges tor implying an exponential decay of the
stationary probability distribution.

Internal Nash equilibrium. For frequency dependent fit-
ness andw.0, the game can have an internal Nash equilib-

FIG. 1. Stationary probability distribution for different evolu-
tionary dynamics depending on the distance to the maximumsN
=100d. For comparison, also the slow decay for neutral evolution is
shown. The decay of the distribution can be fitted by a stretched
exponential exps−bxgd with g=2.06 santicoordination gamed, g
=0.87 sconstant fitnessd, and g=0.63 sPrisoner’s Dilemmad. The
inset shows the same data where both axes are logarithmized, thus
stretched exponentials appear as straight lines. The decay deviates
significantly from a Gaussian distribution for constant fitness and
Prisoner’s Dilemma, corresponding to a random motion in an an-
harmonic potential.
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rium or an equilibrium in one of the absorbing states.
As a simple example with an internal Nash equilibrium

we choose a simple “anticoordination” game withw=1,

P = S0 1

1 0
D . s9d

For the transition probabilities, we find

Ti→i+1 =
N − i

2N
,

Ti→i−1 =
i

2N
, s10d

which describes a random walk with a drift towards the de-
terministic fixed point i =N/2. In equilibrium, we have
PiTi→i+1=Pi+1Ti+1→i for every i, which leads to

Pi+1 = P0p
j=0

i
N − j

j + 1
= P0S N

i + 1
D , s11d

where P0 is determined by normalization.Pi is a binomial
distribution around the equilibrium of the replicator dynam-
ics at i =N/2, Pi =2−Ns N

i
d.

Prisoner’s Dilemma: Nash equilibrium at the border.The
Prisoner’s Dilemmaf34g is a standard model, where mutual
cooperation leads to the highest payoff in the iterated game.
It is motivated by the situation where two prisoners can re-
duce their time in prison by witnessing the other’s guilts“de-
fect”d. On the other hand, if both “cooperate” and refrain
from blaming the other, both receive a reduction of punish-
ment. This is described with parameters fulfillingc.a.d
.b; the dilemma situation originates from the temptationc
.a, defection yields a higher payoff if the opponent coop-
erates. In its standard parameters, the Prisoner’s Dilemma is
defined by the payoff matrix

P = S3 0

5 1
D , s12d

which has a Nash equilibrium for mutual defection, i.e.,i
=0. As b=0, also the statei =1 is absorbing forw=1 stwo
cooperators are needed to promote cooperationd. Thus a
small mutation ratem has to be assumed also forT1→2. Al-
ternatively, one could assumew,1. The transition probabili-
ties are given by

Ti→i+1 =
3i − 3

− i2 − 2i + 3iN + NsN − 1d
isN − id

N
,

Ti→i−1 =
4i + N − 1

− i2 − 2i + 3iN + NsN − 1d
isN − id

N
. s13d

From this, a closed form of the probability distribution can
be derived,ssee below for a derivation with arbitrary payoff
matrixd. A comparison between different stationary distribu-
tions is shown in Fig. 1. The finite-size scaling of the vari-
ance is shown for the same cases in Fig. 2.

Stationary distribution for an arbitrary payoff matrix. For
the ratio of the transition probabilities betweeni andi +1 we
find with w=1, cf. Eq.s4d,

Ti→i+1

Ti+1→i
=

pAsid
ipAsid + sN − idpBsid

si + 1dpAsi + 1d + sN − i − 1dpBsi + 1d
pBsi + 1d

isN − id
si + 1dsN − i − 1d

=
asi − 1d + bsN − id

csi + 1d + dsN − i − 2d
isN − idfsi + 1d2sa − b − c + dd + si + 1ds− a + bN+ cN+ d − 2dNd + NsN − 1ddg
si + 1dsN − i − 1dfi2sa − b − c + dd + is− a + bN+ cN+ d − 2dNd + NsN − 1ddg

=
a − b

c − d

i − N5

i − N6

isN − id
si + 1dsN − i − 1d

si − N1dsi − N3d
si − N2dsi − N4d

. s14d

Here N1¯N4 are the roots of the quadratic expressions ini and N5=sa−bNd / sa−bd, N6=fc+dsN−2dg / sd−cd. We have
excluded the special casesa−b=0, c−d=0 discussed above ins8d andsa−bd / sc−dd=1, where some factors do not depend on
i and part of the expression simplifies. ForN−1.kù j .1, the density of the stationary state can be solved explicitly giving
rising factorialssPochhammer symbolsd, or equivalently, quotients of gamma functions,

FIG. 2. Scaling of the variance, normalized byN, of the finite-
size fluctuations for anticoordination gamesslope −1/2d, constant
fitnesssslope -1d, and Prisoner’s dilemmasslope −3/2d. For neutral
evolution snot shownd the variance increases faster thanN.
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Pk

Pj
= p

i=j

k−1
Ti→i+1

Ti+1→i
= Sa − b

c − d
Dk−j jsN − jd

ksN − kd
Gsk − N5dGs j − N6dGsk − N1dGs j − N2dGsk − N3dGs j − N4d
Gs j − N5dGsk − N6dGs j − N1dGsk − N2dGs j − N3dGsk − N4d

, s15d

which yields, after calculatingPN/PN−1 andP1/P0 explicitly,
and after normalization, the total density of the stationary
state. Equationss5d and s15d cover the general case of 2
32 games including nonvanishing background fitness. The
previously discussed examples are included as special cases.

To conclude, the distribution of the fluctuations around a
Nash equilibrium can be nontrivially broadened in realistic
models of evolutionary game theory. We analyzed the effect
of internal noise stemming from the inherent evolutionary
update fluctuations in a finite population. In general, internal
noise and externally imposed stochastic forces can follow
qualitatively different distributions. In our paper, we concen-
trated on the important case of a Moran process, which can
be considered as a standard model of evolutionary game dy-

namics in finite populations. For the Moran process, the ef-
fect of the finite size of the population can be accessed di-
rectly. Neglecting external noise, we have shown that the
stationary distribution of the Moran process of evolutionary
232 games can be calculated analytically and yields differ-
ent decay tails of the distributions. Depending on the payoff
matrix and the location of the Nash equilibrium, the finite-
size fluctuations may deviate significantly from a Gaussian
distribution.
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